Simulations of a Late Lunar-Forming Impact

نویسنده

  • Robin M. Canup
چکیده

Results of about 100 hydrodynamic simulations of potential Moon-forming impacts are presented, focusing on the “late impact” scenario in which the lunar forming impact occurs near the very end of Earth’s accretion (Canup and Asphaug, 2001, Nature 412, 708–712). A new equation of state is utilized that includes a treatment of molecular vapor (“M-ANEOS”; Melosh, 2000, in: Proc. Lunar Planet. Sci. Conf. 31st, p. 1903). The sensitivity of impact outcome to collision conditions is assessed, in particular how the mass, angular momentum, composition and origin (target vs. impactor) of the material placed into circumterrestrial orbit vary with impact angle, speed, impactor-to-target mass ratio, and initial thermal state of the colliding objects. The most favorable conditions for producing a sufficiently massive and iron-depleted protolunar disk involve collisions with an impact angle near 45 degrees and an impactor velocity at infinity < 4 km/sec. For a total mass and angular momentum near to that of the current Earth–Moon system, such impacts typically place about a lunar mass of material into orbits exterior to the Roche limit, with the orbiting material composed of 10 to 30% vapor by mass. In all cases, the vast majority of the orbiting material originates from the impactor, consistent with previous findings. By mapping the end fate (escaping, orbiting, or in the planet) of each particle and the peak temperature it experiences during the impact onto the figure of the initial objects, it is shown that in the successful collisions, the impactor material that ends up in orbit is primarily that portion of the object that was heated the least, having avoided direct collision with the Earth. Using these and previous results as a guide, a continuous suite of impact conditions intermediate to the “late impact” (Canup and Asphaug, 2001, Nature 412, 708–712) and “early Earth” (Cameron, 2000, in: Canup, R.M., Righter, K. (Eds.), Origin of the Earth and Moon, pp. 133–144; 2001, Meteorit. Planet. Sci. 36, 9–22) scenarios is identified that should also produce iron-poor, ∼ lunar-sized satellites and a system angular momentum similar to that of the Earth–Moon system. Among these, those that leave the Earth > 95% accreted after the Moon-forming impact are favored here, implying a giant impactor mass between 0.11 and 0.14 Earth masses.  2003 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Siderophile Element Characteristics of Lunar Impact Melt Breccias: a Picture Begins to Emerge

Introduction: It has long been hypothesized that the Earth-Moon system, and likely the entire inner solar system, underwent a phase of late accretion, termed late heavy bombardment (LHB), within the interval of time from ~4.1 to ~3.8 Ga [1-3]. Although the putative LHB had a major effect on shaping the surface of the Moon, it likely involved much less mass than is envisioned for late accretion ...

متن کامل

UWFDM-1189 A Lunar Field Geologist's Perspective 30 Years Later: Shocking Revelations About the Moon, Mars and Earth

A number of conventional hypotheses relative to the Moon and the terrestrial planets deserve both questioning and unconventional thought based on the profound advances in planetary research in recent years. For example, elemental and isotopic data on the lower mantle of the Moon suggest that lunar origin by Giant Impact is unlikely. The apparent existence of a relatively undifferentiated lunar ...

متن کامل

Chemical Fractionation after the Moon-forming Giant

Introduction: The Moon is generally thought to have formed from a circumterrestrial disk generated by the impact of a Mars-sized body onto a nearly-formed Earth [1]. The gravitational energy released in such an event is sufficent to completely melt and partially vaporize the Earth and lunar-forming material. This fluid phase of the evolution is not well understood, but may have delayed lunar ac...

متن کامل

A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.

New W isotope data for lunar metals demonstrate that the Moon formed late in isotopic equilibrium with the bulk silicate Earth (BSE). On this basis, lunar Sr isotope data are used to define the former composition of the Earth and hence the Rb-Sr age of the Moon, which is 4.48+/-0.02Ga, or 70-110Ma (million years) after the start of the Solar System. This age is significantly later than had been...

متن کامل

The relative timing of Lunar Magma Ocean solidification and the Late Heavy Bombardment inferred from highly degraded impact basin structures

The solidification of the Lunar Magma Ocean (LMO) and formation of impact basins are important events that took place on the early Moon. The relative timing of these events, however, is poorly constrained. The aim of this study is to constrain the formation ages of old impact basins based on inferences of their thermal state. Most proposed basins formed before Pre-Nectarian (PN) 5 stage do not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003